Introduction
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.
Highlights
1. Nearest neighbors
The Euclidean distance (or cosine similarity) between two word vectors provides an effective method for measuring the linguistic or semantic similarity of the corresponding words. Sometimes, the nearest neighbors according to this metric reveal rare but relevant words that lie outside an average human's vocabulary.
2. Linear substructures
The similarity metrics used for nearest neighbor evaluations produce a single scalar that quantifies the relatedness of two words. This simplicity can be problematic since two given words almost always exhibit more intricate relationships than can be captured by a single number. For example, man may be regarded as similar to woman in that both words describe human beings; on the other hand, the two words are often considered opposites since they highlight a primary axis along which humans differ from one another.
In order to capture in a quantitative way the nuance necessary to distinguish man from woman, it is necessary for a model to associate more than a single number to the word pair. A natural and simple candidate for an enlarged set of discriminative numbers is the vector difference between the two word vectors. GloVe is designed in order that such vector differences capture as much as possible the meaning specified by the juxtaposition of two words.
The underlying concept that distinguishes man from woman, i.e. sex or gender, may be equivalently specified by various other word pairs, such as king and queen or brother and sister. To state this observation mathematically, we might expect that the vector differences man - woman, king - queen, and brother - sister might all be roughly equal. This property and other interesting patterns can be observed in the above set of visualizations.
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Training is performed on aggregated global word-word co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear substructures of the word vector space.
Highlights
1. Nearest neighbors
The Euclidean distance (or cosine similarity) between two word vectors provides an effective method for measuring the linguistic or semantic similarity of the corresponding words. Sometimes, the nearest neighbors according to this metric reveal rare but relevant words that lie outside an average human's vocabulary.
2. Linear substructures
The similarity metrics used for nearest neighbor evaluations produce a single scalar that quantifies the relatedness of two words. This simplicity can be problematic since two given words almost always exhibit more intricate relationships than can be captured by a single number. For example, man may be regarded as similar to woman in that both words describe human beings; on the other hand, the two words are often considered opposites since they highlight a primary axis along which humans differ from one another.
In order to capture in a quantitative way the nuance necessary to distinguish man from woman, it is necessary for a model to associate more than a single number to the word pair. A natural and simple candidate for an enlarged set of discriminative numbers is the vector difference between the two word vectors. GloVe is designed in order that such vector differences capture as much as possible the meaning specified by the juxtaposition of two words.
Man-Women |
Training
The GloVe model is trained on the non-zero entries of a global word-word co-occurrence matrix, which tabulates how frequently words co-occur with one another in a given corpus. Populating this matrix requires a single pass through the entire corpus to collect the statistics. For large corpora, this pass can be computationally expensive, but it is a one-time up-front cost. Subsequent training iterations are much faster because the number of non-zero matrix entries is typically much smaller than the total number of words in the corpus.
The tools provided in this package automate the collection and preparation of co-occurrence statistics for input into the model. The core training code is separated from these preprocessing steps and can be executed independently.
No comments:
Post a Comment